Performance Media for Water Filtration

Removes iron, manganese, hydrogen sulfide, arsenic and radium.

GreensandPlus™ is a black filter media used for removing soluble iron, manganese, hydrogen sulfide, arsenic and radium from groundwater supplies.

The manganese dioxide coated surface of GreensandPlus acts as a catalyst in the oxidation reduction reaction of iron and manganese.

The silica sand core of GreensandPlus allows it to withstand waters that are low in silica, TDS and hardness without breakdown.

GreensandPlus is effective at higher operating temperatures and higher differential pressures than standard manganese greensand. Tolerance to higher differential pressure can provide for longer run times between backwashes and a greater margin of safety.

Systems may be designed using either vertical or horizontal pressure filters, as well as gravity filters.

GreensandPlus is a proven technology for iron, manganese, hydrogen sulfide, arsenic and radium removal. Unlike other media, there is no need for extensive preconditioning of filter media or lengthy startup periods during which required water quality may not be met.

GreensandPlus has the WQA Gold Seal Certification for compliance with NSF/ANSI 61.

REACH Registration 01-2119452801-43-0020 for import to the EU.

Packaging is available in 1/2 cubic foot bags or 1 metric ton (2,205 lbs) bulk sacks.
Physical Characteristics

Physical Form
Black, nodular granules shipped in a dry form

Apparent Density
88 pounds per cubic foot net (1410.26 kg/m³)

Shipping Weight
90 pounds per cubic foot gross (1442.31 kg/m³)

Specific Gravity
Approximately 2.4

Porosity
Approximately 0.45

Screen Grading (dry)
18 X 60 mesh

Effective Size
0.30 to 0.35 mm

Uniformity Coefficient
Less than 1.60

pH Range
6.2-8.5 (see General Notes)

Maximum Temperature
No limit

Backwash Rate
Minimum 12 gpm/sq. ft. at 55°F (29.4 m/hr @ 12.78°C) (see expansion chart)

Service Flow Rate
2 -12 gpm/sq. ft (4.9 m/hr - 29.4 m/hr)

Minimum Bed Depth
15 inches (381 mm) of each media for dual media beds or 30 inches minimum (762 mm) of GreensandPlus alone.

METHOD OF OPERATION CO

GreensandPlus: Catalytic Oxidation (CO)

Catalytic Oxidation (CO) operation is recommended in applications where iron removal is the main objective in well waters with or without the presence of manganese. This method involves the feeding of a predetermined amount of chlorine (Cl₂) or other strong oxidant directly to the raw water before the GreensandPlus Filter.

Chlorine should be fed at least 10-20 seconds upstream of the filter, or as far upstream of the filter as possible to insure adequate contact time. A free chlorine residual carried through the filter will maintain GreensandPlus in a continuously regenerated condition.

For operation using chlorine, the demand can be estimated as follows:

\[\text{mg/L Cl}_2 = (1 \times \text{mg/L Fe}) + (3 \times \text{mg/L Mn}) + (6 \times \text{mg/L H}_2\text{S}) + (8 \times \text{mg/L NH}_3) \]
SUGGESTED OPERATING CONDITIONS

Bed Type
Dual media: anthracite 15-18 in. (381 mm - 457 mm) and GreensandPlus 15-24 in. (381 mm - 610 mm)

Capacity
700-1200 grains of oxidized iron and manganese/sq.ft. of bed area based on oxidant demand and operation to iron break through or dp limitations.

Backwash
Sufficient rate using treated water to produce 40% bed expansion until waste water is clear, or for 10 minutes, whichever occurs first.

Air/Water Scour
Optional using 0.8-2.0 cfm/sq. ft. (15 m/hr - 7 m/hr) with a simultaneous treated water backwash at 4.0-4.5 gpm/sq. ft. (9.8 m/hr -11.03 m/hr).

Raw Water Rinse
At normal service flow rate for 3 minutes or until effluent is acceptable.

Flow Rate
Recommended flow rates with CO operation are 2-12 gpm/sq. ft. (4.9 m/hr - 29.4 m/hr). High concentrations of iron and manganese usually require lower flow rates for equivalent run lengths. Higher flow rates can be considered with very low concentrations of iron and manganese. For optimizing design parameters, pilot plant testing is recommended. The run length between backwashes can be estimated as follows:

What is the run length for a water containing 1.7 mg/L iron and 0.3 mg/L manganese at a 4 gpm/sq. ft. service rate:

Contaminant loading
\[= (1 \times \text{mg/L Fe}) + (2 \times \text{mg/L Mn}) \]
\[= (1 \times 1.7) + (2 \times 0.3) \]
\[= (2.3 \text{ mg/L or } 2.3/17.1 = 0.13 \text{ grains/gal. (gpg)} \]

At 1,200 grains / sq. ft. loading ÷ 0.13 gpg
\[= 9,230 \text{ gal./sq. ft.} \]

At 4 gpm / sq. ft. service rate 9,230/4
\[= 2,307 \text{ min.} \]

The backwash frequency is approximately every 32-38 hours of actual operation.

GENERAL NOTES

pH
Raw waters having natural pH of 6.2 or above can be filtered through GreensandPlus without pH correction. Raw waters with a pH lower than 6.2 should be pH-corrected to 6.5-6.8 before filtration. Additional alkali should be added following the filters if a pH higher than 6.5-6.8 is desired in the treated water. This prevents the possible adverse reaction and formation of a colloidal precipitate that sometimes occurs with iron and alkali at a pH above 6.8.

Initial Conditioning of GreensandPlus
GreensandPlus media must be backwashed prior to adding the anthracite cap. The GreensandPlus backwash rate must be a minimum of 12 gpm/sq. ft. @ 55°F.

After backwashing is complete, the GreensandPlus must be conditioned. Mix 0.5 gal. (1.9 L) of 6% household bleach or 0.2 gal (0.75 L) of 12% sodium hypochlorite for...
Initial Conditioning of GreensandPlus

every 1 cu. ft. (28.3 L cu. m) of GreensandPlus into 6.5 gallons (25 L) of water.

Drain the filter enough to add the diluted chlorine mix. Apply the diluted chlorine to the filter being sure to allow the solution to contact the GreensandPlus media. Let soak for a minimum of 4 hours, then rinse to waste until the “free” chlorine residual is less than 0.2 mg/L. The GreensandPlus is now ready for service.

Radium and Arsenic Removal Using GreensandPlus

The GreensandPlus CO process has been found to be successful in removing radium and arsenic from well water. This occurs via adsorption onto the manganese and/or iron precipitates that are formed. For radium removal, soluble manganese must be present in or added to the raw water for removal to occur. Arsenic removal requires iron to be present in or added to the raw water to accomplish removal. Pilot plant testing is recommended in either case.

REFERENCES

USA

American Water Company, CA
San Jacinto, CA
City of Tallahassee, FL
Adedge Technologies, Inc., Buford, GA
City of Mason City, IL
City of Goshen, IN
City of Hutchinson, KS
City of Burlington, MA
Dedham Water Co., MA
Raynham Center, MA
Northbrook Farms, MD
Sykesville, MD
Tonka Equipment Company, Plymouth, MN
City of New Bern, NC
Onslow County, NC
Hungerford & Terry, Inc., Clayton, NJ
Fort Dix, NJ
Jackson Twsp. MUA, NJ

International

Churchill County, NV
Suffolk County Water Authority, NY
City of Urbana, OH
Roberts Filter Group, Darby, PA

Watergroup, Saskatoon, SK Canada
BI Pure Water, Surrey, BC Canada
Sydney, Nova Scotia, Canada
PT Beta Pramesta, Jakarta, Indonesia
PT Besflo Prima, Jakarta, Indonesia
Eurotrol, Milanese, Italy
Gargon Industrial, Mexico City, Mexico
River Sands Pty. Ltd., Queensland, Australia
Filtration Tech, Auckland, New Zealand
Alamo Water Polan, Izabeln, Poland
Aquatrol Company, Moscow, Russia
Impulse Group, St. Petersburg, Russia
Brenntag Nordic, Taby, Sweden
EcoFilter Technology, Liechtenstein

REACH Registration
01-2119452801-43-0020
for import to the EU.

Distributed by:
BI Pure Water Inc
#2 9790 190th St
Surrey, BC
V4N 3M9
T: 888-901-3111

Disclaimer: The information and recommendations in this publication are true and reliable to the best of our knowledge. These recommendations are offered in good faith but without warranty or liability for consequential damage as conditions and method of use of our products are varied and beyond our control. We suggest the user determine the suitability and performance of our products before they are adopted on a commercial scale.

The manufacturing of GreensandPlus is an ongoing, 24/7 process to ensure the highest quality water treatment media.